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The application of direct simulation Monte Carlo methods to complex rarefied gas 
problems is well established. Several such methods now exist and these may be put into one 
of two categories, i.e., those which model the Boltzmann equation and those which model the 
Kac master equation. Previously, the latter methods have been in the ascendancy mainly due 
to their numerical efficiency. However, recent advances in using the Boltzmann equation as 
the kinetic model mean that the application of this solution technique warrants investigation. 
Our calculations show that the new DSMC method derived from the Boltzmann equation can 
achieve a processing time comparable with the more popular Monte Carlo schemes based on 
the Kac formulation. r” 1989 Academic Press, Inc. 

1. INTRODUCTION 

The direct simulation Monte Carlo method (DSMC) pioneered by Bird [l] is 
now a popular and successful solution technique in the field of near continuum and 
rarefied gas dynamics problems. In this method the large number of molecules in 
a real gas is represented by a much smaller statistical population of simulated 
particles. The essence of the method is that the collisions of these particles may be 
treated separately from their transverse motion over a small timestep At. This basic 
assumption is implemented many times in each of the cells describing physical 
space and a steady state solution is found by allowing the flow to relax until local 
equilibrium is reached in all parts of the flowfield. 

Many complex and necessary aspects of molecular gas phenomena have been 
incorporated into the method including the ability to simulate: 

(a) gas mixtures, 
(b) internal energy modes, 
(c) gas/surface interactions, 
(d) chemical reactions. 

The DSMC method of Bird is not unique: several schemes now exist and all of 
these have been categorised by Nanbu [2, 31. The methods are classified according 
to whether they employ (A) the Kac master equation [4] as the mathematical 
model or (B) the Boltzmann equation. The essential differences in the schemes lie 
in the manner in which molecular collisions are performed. 
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Birds scheme falls into category (A) [2] although no conscious effort was made 
to solve the Kac equation. Instead, the driving force behind this method was the 
requirement to employ the minimum amount of computational effort while still 
obtaining engineering solutions to complex flow phenomena. In this respect the 
method has been highly successful. 

The method of Nanbu [S] was the first DSMC method to fall into category (B). 
He derived his scheme in a mathematical manner directly from the Boltzmann 
equation. Nanbu’s scheme has failed to achieve popularity due to the fact that it 
is very computationally intensive and also that energy and momentum are not 
conserved at the collision level. Later, however, Babovsky [6] proved in a strict 
mathematical sense that Nanbu’s method achieves convergence, which has not been 
proven for the method of Bird. 

The main differences in the implementation of the two methods may be deduced 
from the following brief descriptions of the respective schemes. 

In Bird’s method each collision is assigned a lifetime and a number of collisions 
calculated until the sum of these lifetimes is greater than At. In this way the expense 
of the method is found to be proportional to the number of molecules in the cell. 
In this scheme the first colliding molecule is chosen at random, after which the 
partner is defined in a probabilistic way and both molecules experience a change in 
state due to the collision. These points together imply that it is possible for each 
molecule to collide several times over At in Birds method. 

The method of Nanbu is quite different. The probability of collision for each 
molecule is found in turn by calculating a,g, where gT is the total collision cross 
section and g is the relative velocity of two colliding bodies. As calculation of a,g 
requires the sum of N terms, the total expense of the method is found to be propor- 
tional to the square of the number of particles. The collision partner of the molecule 
presently under consideration may be defined in the same way as that in the Bird 
scheme, although only the first molecule undergoes change in the Nanbu method. 
Thus energy and momentum are not conserved molecule by molecule. However, on 
the grand scale, these quantities are seen to be conserved. Finally, in the Nanbu 
scheme, any changes in state due to intermolecular collisions are not implemented 
until all such calculations have been completed. 

In a recent paper [7] the authors have made a thorough comparison of the two 
methods in an engineering context. In addition to finding excessive computational 
effort for the Nanbu scheme it was discovered that the implementation of this 
method may offer difficulties with respect to the initial choice of At. The problem 
was traced to the fact that in the Nanbu scheme each molecule may collide only 
once over the decoupling timestep. The choice of an appropriate value for At was 
only arrived at by a lengthy and expensive analysis of the particular flow problem, 
which would have to be repeated if the flow conditions were altered. It was 
concluded therefore that although in principle the method of Nanbu may be used 
to simulate engineering flows, in practise the difficulties in implementation and the 
poor computational performance make its application impracticable. 

Since the completion of this work on the Nanbu method, the work of Babosky 
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[6] and Ploss [8] has been brought to our attention. Babovsky proves con- 
vergence of the Nanbu scheme by splitting the decoupling timestep At into an 
integer number of equal intervals. This immediately gave us the hope that the dif- 
ficulties encountered with the initial choice of At could be eliminated. In addition, 
a further modification to Nanbu’s scheme implemented by Ploss claimed to reduce 
the computational expense of the method. It is clear that these improvements to the 
Nanbu scheme may overcome the difficulties previously experienced [7] thus 
making its applicability more desirable. This scheme which has been designated the 
modified Nanbu method has therefore been investigated and its implementation is 
now described. 

2. THE MODIFIED NANBU SCHEME 

In the original scheme of Nanbu the collision probability 
by 

Pi= 5 P,= F ~Am,(g,)g,, 
.j= I j=IN 

for molecule i is given 

(1) 

where 

n is the number density in the cell, 
N is the number of simulated molecules in the cell, 

and the total collision cross section is a function of the relative velocity g, of 
molecules i and j. 

Over the decoupling timestep At, each particle is considered in turn as a 
candidate for collision so that each molecule may only collide once at most over 
each timestep. This aspect of the Nanbu scheme gave rise to the adverse effects 
reported in [7] and made choice of At difficult. 

The first modification made to the method was to split the timestep At into L 
equal intervals, As. The collision algorithm is then called L times before molecular 
motion is again computed. This concept was introduced to prove convergence of 
Nanbu’s method but it has the additional result of allowing each molecule to collide 
up to L times over the decoupling timestep At. This clearly allows the initial choice 
of At to be made in a less stringent manner although the appropriate choice of L 
still has to be dealt with. 

The second modification leads to the expense of the method becoming propor- 
tional to the number of simulated molecules rather than the square. An explanation 
of the modifications may be found in [8]. It is sufficient here to confine ourselves 
to a description of the implementation. 

In Nanbu’s scheme the quantity Pi, which is the sum of all the P, terms, must 
be less than one for each molecule i, see Fig. la. On the line [0, l] the subsection 
defined by [P,, l] is the probability that the ith molecule does not collide. The 
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FIG. 1. Distributions of the probabilities P, over the unit interval for (a) the original Nanbu scheme 
and (b) the modified Nanbu scheme. 

manner in which [Pi, l] is distributed is unimportant and so for convenience each 
of the P, are distributed at N identical intervals in [0, l] as shown in Fig. lb. A 
random number R E [0, 1 ] is generated and used to define the possible collision 
partner in the following way: (i) if 

RE j-1 j [ 1 -- 
N ‘N 

then j is the possible collision partner. P, is then computed using dt instead of At 
and, using the same random number, (ii) if 

R+P, 

a collision between molecules i and j is calculated. 
The calculation of the collision then proceeds in the same manner as for the 

original method of Nanbu, i.e., only molecule i undergoes change, and the 
molecular properties are updated at the end of each call of the collision algorithm. 

While in the original scheme At must be chosen with care so that Pi is always less 
than unity, in the modified method L must be chosen to satisfy 

for all i and j. This is clearly a more desirable criterion as the value of L will not 
affect the motion of the molecules while the choice of At has a direct effect, 

Only one P, calculation is made for each molecule, so that it may be seen that 
the expense of the modified Nanbu method is proportional to N, thus making it 
considerably more efficient than the original scheme. However, the increased 
parallel nature of the modified algorithm results in a further powerful reduction in 
computational expense through the application of vector computers. A full descrip- 
tion of the vectorization procedure for part of the algorithm is included in [8]. 
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This new DSMC scheme has been implemented and tested on a CRAY 1-S and 
utilises the vectorization facilities available. When analysing a new computational 
method the choice of the test case is important. The two flow problems investigated 
here allow many aspects of the Monte Carlo method to be inspected with respect 
to the modified algorithm. Specifically, the one-dimensional Rayleigh problem and 
the sonic expansion of nitrogen through a small nozzle have been tested. With the 
experience gained from these simulations a simple method for estimating the 
number of subdivisions of the timestep was developed and is described. 

3. THE RAYLEIGH PROBLEM 

The Rayleigh problem is a well-known, theoretical, one-dimensional, unsteady 
flow problem. A semi-infinite volume of homogeneous gas of density pm and tem- 
perature T, is at rest above the diffusely reflective plane y = 0. This plane instan- 
taneously acquires a temperature T, and a velocity in the positive x direction U, 
at time t = 0. In the present case T, and U, are chosen to coincide with the linite- 
difference solution of Chu [9] who solved the non-linear Krook equation for the 
problem. Specifically, U, is taken as twice the most probable thermal speed of the 
stationary gas and T,, is taken as 1.6 times the gas temperature. 

Results are presented at tuo = 5 and tu,, = 10 where u0 is the collision rate in the 
undistrubed gas. The simulation region extends to 20&, where & is the mean free 
path before displacement occurs, and the number of cells employed is 80. As the 
flow is unsteady, each set of results is averaged by running the simulation from 
the initial conditions through to tu, = 10 over a large number of repetitions 
(typically 200). In this study, hard-sphere molecules have been employed and the 
initial configuration follows that of Bird [ 1, Appendix G]. 

In this problem the surface properties at the diffusely reflecting plate are also of 
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FIG. 2. Number density plots for the Rayleigh problem. *, modified Nanbu, FIJI = 5; 0, Bird, [II,, = 5; 
+, modified Nanbu, IV,= 10; X, Bird, tug= 10; -, Chu [9]. 
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FIG. 3. Temperature plots for the Rayleigh problem. *, modified Nanbu, tu, = 5; 0, Bird, tu,, = 5; +, 
modified Nanbu, lug = 10; A’, Bird, tvO = 10; -, Chu [9]. 
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FIG. 4. Shear velocity plots for the Rayleigh problem. *, modified Nanbu, ru,, = 5; 0, Bird, rug = 5; 
+, modified Nanbu, ruO= 10; A’, Bird, rug= 10; -, Chu [9]. u0 is the most probable thermal 
velocity in the undisturbed gas. 
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FIG. 5. Normal velocity plots for the Rayleigh problem. *, modified Nanbu, tug = 5; 0, Bird, tuO = 5; 
+, modified Nanbu, tu,, = 10; A’, Bird, tug = 10; -, Chu [9]. 
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interest. Bird [ 1, p. 1521 calculated a number of time-independent collisionless 
properties and claimed that his DSMC results could be extrapolated to these 
values. Specifically, number flux, pressure, shear stress, and heat flux were 
investigated. However, these extrapolations are by no means conclusive. To 
investigate this phenomenon in more detail a larger number of flow cells has been 
employed in our simulations. 

Calculations were made with both the Bird and modified Nanbu simulation 
schemes. The most efficient value for L in the modified method was found to be 
three. Employing larger values gave self-consistent results with increasingly longer 
execution times. Smaller values gave unsatisfactory results. The modified Nanbu 
calculations required about 20% more processing time than that for the Bird 
method. 

Flowfield results for number density, temperature, and the velocities in the shear 
and normal directions are shown for the two methods together with Chu’s calcula- 
tions in Figs. 2-5. Excellent agreement exists for the two DSMC techniques. The 
main deviation of the Monte Carlo results from Chu’s calculations occur for the 
normal velocity. It is interesting to note in this respect that the results obtained 
with the modified method show a much improved correspondence with the finite 
difference solution than do those of Bird. In addition these results show much less 
scatter. 

Although it is by no means certain, this improved scatter phenomena may be due 
to the increased deterministic nature of the modified scheme. It is certainly true that 
the modified Nanbu method produces results which are consistent with Bird’s 
calculations, thus showing that the violation of conservation of energy and momen- 
tum at the molecular level does not seem to have an adverse effect on the results. 

4. SONIC EXPANSION 

Having established confidence in the modified method through the one-dimen- 
sional experiments it was decided to re-investigate the two-dimensional flow 
discussed in [7]. It would then be possible to assess the modified method against 
those of both Bird and Nanbu. In addition, these calculations include the transfer 
of energy between internal modes using the Larsen-Borgnakke [lo] 
phenomenological model. It is of great importance that such aspects of the DSMC 
method are proved to function correctly within the structure of the new scheme. 
This model is implemented in the usual manner in that the total collision energy of 
the colliding molecules is used to sample post-collision values from local equi- 
librium distribution functions. In keeping with the general concept of the Nanbu 
algorithm, only one molecule undergoes change as a result of each inelastic collision 
calculated. In the present study, the collision number is assumed to be constant and 
has a value of 5. 

The flow consists of the sonic expansion of hot nitrogen gas through a small 
nozzle which provides parallel flow at the exit plane. The exit radius is taken as 15 
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mean free paths; the flow is two-dimensional having a specularly reflecting 
centreline. The initial temperature and pressure of the nitrogen is taken as 2000 K 
and 5000 Nme2, respectively. The steady state solution to this problem is achieved 
by averaging the flow properties over a suitable sample size. In the current calcula- 
tions, each cell in the flowfield typically contains 2&30 simulated molecules and a 
minimum sample size of 4000 is employed in the averaging process. 

As in [7] the effect of different collision models was investigated using the 
variable hard sphere (VHS) formation of Bird [ll]. In this model the total 
collision cross section is given as a function of the relative collision velocity 

where 

aR is a reference cross section calculated at temperature T, 

m, is the reduced mass of the collision 
k is Boltzmann’s constant 
w defines the particular collision interaction. 

In the present work we were particularly interested in discovering the relationship 
between the value of L and that of w. In particular, for direct comparison with 
results presented in [7], the values of w investigated were w = 0, 0.24, and 0.5. An 
efficient value of L was discovered through a series of numerical experiments. For 
each value of o chosen, an initial value of L was guessed. The modified algorithm 
was run and results averaged over the same number of loops as for the simulation 
which employed the Bird method. The calculations for the two methods were then 
compared. In particular, number density and translational and rotational tem- 
perature contours together with the collision rates in the various regions of the 
flowlield were analysed. If good agreement in the results was found then the value 
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FIG. 6. Density plots for the sonic expansion of hot nitrogen: -, Bird method [7]; *, modified 
Nanbu method. 
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FIG. 7. Temperature plots for the sonic expansion of hot nitrogen: -, Bird method; *, modified 
Nanbu method. 

of L was reduced until the calculations for the two methods began to diverge. Alter- 
natively, if the results for our initial value for L did not agree then L was increased 
until satisfactory results were obtained. In this manner a correspondence between 
L and o was obtained. 

Results for density and temperature contours are shown in Figs. 6 and 7 for 
typical calculations. It can be seen that good agreement exists for the two methods. 
The rotational temperature contours showed similar agreement. In addition, it was 
found that the computational cost of the new method was up to eight times faster 
than the original Nanbu scheme, and just 25 % more expensive than the method of 
Bird. The relative CPU times required for these calculations using the Bird, Nanbu, 
and modified Nanbu schemes, for the three values of o investigated are shown in 
Table I. This confirms the claims of Nanbu [3] that the modified method should 
be considered seriously as an altenative simulation method to that of Bird. 

It is clear that the ability to choose L rather than having to alter At is much 
preferable. It is concluded that the modified Nanbu direct simulation method may 
be used to solve engineering problems providing a suitable value of L is determined. 
To avoid unnecessary computational cost it is clear that a method of determining 
L from the initial flow conditions is desirable. Such a method is now described. 

TABLE I 

Problem 
Coil. model 

(WI Bird 

CPU relative to Bird 

Nanbu Modified Nanbu 

l-d 
2-d 
2-d 
2-d 

0.00 1.000 1.193 
0.00 1.ooo 4.341 1.235 
0.24 1.ooo 7.565 1.260 
0.50 1.000 9.822 1.245 
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5. APPROXIMATE METHOD FOR CALCULATING L 

The determination of an effective value for L in the modified Nanbu scheme 
through numerical experimentation is a very expensive procedure. It is clearly 
desirable that a value for L should be predicted from the initial flow properties 
prior to simulation. A simple method for prescribing L is now described. 

Consider the form of Eq. (2) for the VHS collision model 

L~nndta,(g,i)‘~2”[t-m,/{(2-w)kT,}]-”. (4) 

The number density may be replaced by N/V, where I/ is the volume of the current 
cell. For a particular flow problem, an estimate of the maximum value of the 
expression in (4) is required. In particular, the maximum value of 

n(g,)““+g..)l-‘” (5) 

must be found. In the range of operation of w, i.e., o E [0,0.5] the expression 
1 - 20 > 0 so that the maximum value of g, coincides with that of ( gii)1-2w. When 
1 - 2w = 0, the expression in (4) is constant, so that the following analysis is 
unnecessary. 

The thermal velocities U’ of colliding molecules are assumed to have a 
Maxwellian distribution given by the temperature T in each cell, i.e., 

(6) 

where 

p-1 = & 112 
(7 m 

is the most probable thermal velocity and m is the molecular mass. Hence the maxi- 
mum value for the total velocity in any one direction may be approximated by 

urnax= u+3p-’ 

and the minimum velocity by 

Urnin= U-38-‘, 

where U is the component of the stream velocity. 
It should be noted that in the Maxwellian distribution (6), a maximum argument 

equal to 3/I-’ accounts for 99.99% of probable velocities and is the usual cut-off 
value used when sampling from such a distribution. 
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The maximum value for the relative velocity between two colliding molecules in 
any one direction is then given by 

An approximate value for the maximum relative velocity calculated over all three 
components is now 

(giihnax = [(68-l)‘+ (6pV)* + (6p-‘)*]“* = (108)1’2~-‘. 

Substituting into expression (5) reveals that the maximum collision probability 
occurs at the maximum value of 

It is therefore essential that the maximum values of N and T be estimated before 
commencing the Monte Carlo simulation. In the case of the Rayleigh problem these 
parameters may be obtained from Chu’s solutions. The other necessary values may 
be obtained from initial conditions and substitution into (8) and (4) results in 
L > 2.1 which is in good agreement with our value of L = 3 obtained by experiment. 

In the calculations for the sonic expansion the conditions at the nozzle exit are 
used to determine L as both N and T have their maximum values at this part of 
the flowlield. The full expression for the determination of L is 

(9) 

Thus it can be seen that the choice of o will directly affect the value of L required 
to ensure that the modified algorithm functions correctly. 

The calculations made at the nozzle exit using this equation together with the 
values of L found by numerical experiment are shown in Table II. The expression 
is plotted as a function of w in Fig. 8. 

TABLE II 

Problem 
Coil. model 

(0) L calculated L experiment 

I-d 0.00 2.10 3 
2-d 0.00 55.60 50 
2-d 0.05 42.64 41 
2-d 0.15 24.81 24 
2-d 0.24 15.16 15 
2-d 0.35 8.17 9 
2-d 0.53 3.55 5 
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FIG. 8. Number of subdivisions of the timestep At in the modified Nanbu scheme as a function of 
the VHS collision model parameter w: ---, Eq. (9); *, result found from numerical experiment. 

It is clear that excellent agreement exists between the values, so that it is felt that 
an effective value for L may be obtained using this simple method for any given 
conditions. For large engineering problems in which there are large differences in 
local mean free path at different points in the flowfield it is necessary to employ dif- 
ferent decoupling timesteps. In such problems it will also be necessary to calculate 
different values of L for each of these flow regions. 

An identical time increment At has been employed for each value of o 
investigated in the calculations. The large variation in the required value of L 
observed in the numerical experiments and predicted by Eq. (9) indicates that for 
ideal simulation the decoupling timestep should be recalculated whenever w is 
altered. This introduces another useful aspect of Eq. (9) which may be used to 
identify an appropriate At for a chosen value of L. 

It should be noted that the large values of L required for when w < 0.25 suggests 
that in many cases the particles should collide several times over Ar. This 
emphasises the improvement made to the Nanbu method by the subdivision of the 
decoupling timestep. 

6. CONCLUDING REMARKS 

In the present work the usefulness of the modified Nanbu direct simulation 
Monte Carlo method has been illustrated. This method offers great improvements 
on the original scheme of Nanbu both in terms of performance and implementation 
by allowing the decoupling timestep to be split into a number of L equal sub- 
divisions. 

The method has successfully predicted results for one- and two-dimensional flows 
with additional computational costs of less than 25% compared with those 
incurred with the method of Bird. It should be noted, however, that the parallel 
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nature of the modified algorithm may lead to further reductions in computational 
effort. Results for diffuse reflection from a hot surface and for internal energy 
transfer are found to be consistent with those of Bird. 

The statistical fluctuations inherent in the two methods should also be 
considered. In Bird’s scheme, the first of the two collision partners is chosen in a 
completely random fashion. It is therefore possible for molecules to be overlooked 
which have high collision probabilities. On the other hand, in the Nanbu schemes, 
the collision probability of each molecule is considered, so that a better determina- 
tion of the molecules which collide is achieved. Thus the modified scheme is a more 
deterministic method than that of Bird and it would be expected that its results 
would show less scatter. In the DSMC method this would mean that reasonable 
averages could be obtained over a smaller statistical sample. This aspect of the 
Monte Carlo method has not been properly investigated and a requirement for the 
future is that such an analysis should be performed with respect to problems for 
which theoretical or experimental results are well established. 
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